Regulation of the Government of the Republic Base Units of the International System of Units (SI), Units Derived therefrom, their Multiples and Submultiples and Internationally Established Additional Units and their Manner of Use Annex 2

Tables

Quantity	Unit name	Symbol
Length	metre	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	А
Thermodynamic temperature	kelvin	Κ
Amount of substance	mole	mol
Luminous intensity	candela	cd

Table 1. SI BASE UNITS

Table 2. SI DERIVED UNIT OF TEMPERATURE

Quantity	Unit special name	Symbol
Celsius temperature	degree Celsius	°C

Table 3. SI DERIVED UNITS WITH SPECIAL NAMES AND SYMBOLS

Physical quantity	Unit special name	Unit symbol	Expression in terms of SI base and derived units	Expression in terms of SI base units
Plane angle	radian	rad		$1 \text{ rad} = 1 \text{ m} \cdot \text{m}^{-1}$
Solid angle	steradian	sr		$1 \text{ sr} = 1 \text{ m}^2 \cdot \text{m}^{-2}$
Frequency	hertz	Hz		$1 \text{ Hz} = 1 \text{ s}^{-1}$
Force	newton	Ν		$1 \text{ N} = 1 \text{ m} \cdot \text{kg} \cdot \text{s}^{-2}$
Pressure, stress	pascal	Ра	$N \cdot m^{-2}$	$1 Pa = 1 m^{-1} \cdot kg \cdot s^{-2}$
Energy, work; quantity of heat*	joule	J	N · m or W · s	$1 J = 1 m^2 \cdot kg \cdot s^{-2}$
Power**, radiant flux	watt	W	$J \cdot s^{-1}$	$1 W = 1 m^2 \cdot kg \cdot s^{-3}$
Quantity of electricity, electric charge	coulomb	С		$1 C = 1 s \cdot A$
Electric potential, potential	volt	V	W·A ⁻¹	$1 \text{ V} = 1 \text{ m}^2 \cdot \text{kg} \cdot \text{s}^{-3} \cdot \text{A}^{-1}$

		1		r
difference,				
electromotiv				
e force (emf)			** • 1	
Electric	ohm	Ω	$V \cdot A^{-1}$	$1 \Omega = 1 m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$
resistance			1	
Conductance	siemens	S	$A \cdot V^{-1}$	$\frac{1 \text{ S} = 1 \text{ m}^{-2} \cdot \text{kg}^{-1} \cdot \text{s}^{3} \cdot \text{A}^{2}}{1 \text{ F} = 1 \text{ m}^{-2} \cdot \text{kg}^{-1} \cdot \text{s}^{4} \cdot \text{A}^{2}}$
Capacitance	farad	F	$\mathbf{C} \cdot \mathbf{V}^{-1}$	$1 \mathbf{F} = 1 \mathbf{m}^{-2} \cdot \mathbf{k} \mathbf{g}^{-1} \cdot \mathbf{s}^4 \cdot \mathbf{A}^2$
Magnetic flux	weber	Wb	V·s	$1 \text{ Wb} = 1 \text{ m}^2 \cdot \text{kg} \cdot \text{s}^{-2} \cdot \text{A}^{-1}$
Magnetic	tesla	Т	Wb \cdot m ⁻²	$1 \mathrm{T} = 1 \mathrm{kg} \cdot \mathrm{s}^{-2} \cdot \mathrm{A}^{-1}$
flux density				
(magnetic				
induction)				
Inductance	henry	Н	$Wb \cdot A^{-1}$	$1 \text{ H} = 1 \text{ m}^2 \cdot \text{kg} \cdot \text{s}^{-2} \cdot \text{A}^{-2}$
Luminous	lumen	lm	cd · sr	$1 \text{ lm} = 1 \text{ m}^2 \cdot \text{m}^{-2} \cdot \text{cd}$
flux				
Illuminance	lux	lx	$lm \cdot m^{-2}$	$1 lx = 1 m^{-2} \cdot cd$
Activity of a	becquerel	Bq		$1 \text{ Bq} = 1 \text{ s}^{-1}$
radionuclide				
Absorbed	grey	Gy	$J \cdot kg^{-1}$	$1 \text{ Gy} = 1 \text{ m}^2 \cdot \text{s}^{-2}$
dose, specific				
energy				
imparted,				
kerma,				
absorbed				
dose index				
Dose	sievert	Sv	$J \cdot kg^{-1}$	$1 \text{ Sv} = 1 \text{ m}^2 \cdot \text{s}^{-2}$
equivalent				
Catalytic	katal	kat		$1 \text{ kat} = 1 \text{ mol} \cdot \text{s}^{-1}$
activity				

* In electric and thermal energy, the energy unit W \cdot s and its multiples are used.

** Special names for the unit of power are used in electric energy: the name volt–ampere (symbol 'V·A') when it is used to express the apparent power of alternating electric current, and var (symbol 'var') to express reactive electric power. The 'var' is not included in the resolutions of the General Conference on Weights and Measures (*Conférence générale des poids et mesures* or CGPM).

Table 4. PREFIXES AND THEIR SYMBOLS USED TO DESIGNATE DECIMALMULTIPLES AND SUBMULTIPLES OF SI UNITS

Prefix	Symbol	Factor
yotta	Y	10 ²⁴
zetta	Z	10 ²¹
exa	Е	10 ¹⁸
peta	Р	10 ¹⁵
tera	Т	10 ¹²
giga	G	10 ⁹
mega	М	10 ⁶

kilo	k	10 ³
hecto	h	10 ²
deca	da	10 ¹
deci	d	10-1
centi	c	10 ⁻²
milli	m	10 ⁻³
micro	μ	10-6
nano	n	10 ⁻⁹
pico	р	10 ⁻¹²
femto	f	10 ⁻¹⁵
atto	а	10 ⁻¹⁸
zepto	Z	10 ⁻²¹
yocto	у	10-24

Table 5. DECIMAL MULTIPLES AND SUBMULTIPLES OF SI UNITS WITH SPECIAL NAMES

Quantity	Special name of unit	Symbol	Value
Volume	litre	1, L*	$1 l = 1 dm^3 = 10^{-3} m^3$
Mass	tonne	Т	$1 t = 1 Mg = 10^3 kg$
Pressure, stress	bar**	bar	1 bar = 10^5 Pa = 0,1 MPa

* The symbol "1" shall be preferred. The symbol "L" may be used in cases where the symbol of litre and the number 1 may be confused due to technical reasons related to printing.

** Pursuant to the resolution of the International Committee for Weights and Measures (*Comité international des poids et mesures*, CIPM) of 1978, the use of the unit bar is no longer expedient and expanding the area of application of this unit is prohibited.

Table 6. UNITS WHICH ARE DEFINED ON THE BASIS OF SI UNITS BUT ARE NOT DECIMAL MULTIPLES OR SUBMULTIPLES THEREOF

Quantity	Name	Symbol	Value
Plane angle	revolution		1 revolution = 2π rad
	gon	gon	1 gon = ($\pi/200$) rad
	degree	^o	$1^{\circ} = (\pi/180)$ rad
	minute	'	$1' = (1/60)^{\circ}$
	second	"	1" = (1/60)'
Time	minute	min	$1 \min = 60 \mathrm{s}$
	hour	h	1 h = 60 min = 3 600 s
	day	d	1 d = 24 h = 86 400 s

Table 7. UNITS DEFINED INDEPENDENTLY OF SI UNITS

Quantity	Name	Symbol	Definition
Mass	Unified atomic mass unit		1 unified atomic mass unit is equal to $1/12$ of the mass of an atom of the nuclide ${}^{12}C$.
Energy	Electronvolt		1 electron volt is the kinetic energy acquired by an electron in passing through a potential difference of 1 volt in vaccum

Table 8. UNITS CONNECTED WITH SI UNITS PERMITTED IN SPECIALISED FIELDS ONLY

Quantity	Name	Symbol	Value
Vergency of optical systems	dioptre	dpt	$1 \text{ dpt} = 1 \text{ m}^{-1}$
Area of farmland and building land	are	а	$1 a = 10^2 m^2$
	hectare	ha	$1 \text{ ha} = 10^2 \text{ a} = 10^4 \text{ m}^2$
Effective cross-sectional area in atomic physics	barn	b	$1 b = 10^{-28} m^2$
Mass of pearls and precious stones	metric carat	ct*	$1 \text{ ct} = 2 \cdot 10^{-4} \text{ kg}$
Mass per unit length of textile yarns and threads	tex	tex	$1 \text{ tex} = 10^{-6} \text{ kg} \cdot \text{m}^{-1}$
Blood pressure and pressure of other body fluids	millimetre of mercury	mm Hg	1 mm Hg = 133,322 Pa

* The symbol "ct" is in wide use, but has not been approved by the CIPM and the International Organization for Standardization (ISO).